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1. 

Although it is perhaps not immediately obvious, there is a very intimate relation between
discrete and continuous systems. In fact, they generally represent two distinct
mathematical models of the same physical system [1]. To demonstrate this, the differential
equation for the transverse vibrations of a string is derived first by regarding it as a discrete
system and then letting it approach a continuous model in the limit. Then the problem
is formulated by regarding the system as continuous from the beginning, and it is shown
that the same equation of motion is obtained in both cases. In reference [2], after deriving
the equations of longitudinal oscillations of mass points connected by massless springs and
transverse planar oscillations of mass points on a stretched massless string, it is observed
that both equations have exactly the same form. Then, the behaviour of these discrete
systems is examined when the characteristic scale of the phenomena is large compared with
the interparticle spacing. Noting that the resulting limiting equations describe a continuous
string, the same equations are also derived directly. A similar line of thought is followed
also in the following two works. In reference [3], by starting from the loaded string discrete
system, the differential equation for the vibrations of the wire is derived by making the
number of discrete masses tend to infinity in the discrete equation of motion. On the other
hand, in reference [4], the transition approach from a discrete to a continuous system is
applied to the small longitudinal vibrations of an infinitely long elastic rod. In reference
[5], in the section entitled ‘‘Lumped Parameter Representation of Continuous Systems’’,
a slightly different path is followed to investigate the accuracy with which the frequencies
of longitudinal vibrations of a continuous rod may be estimated by representing it as a
series of identical masses and springs where the rod under consideration is assumed to be
rigidly held at one end and fixed at the other. After establishing an explicit formula for
the eigenfrequencies of the discrete system, it is shown, among others, that the discrete
mass approximation underestimates the natural frequencies of the continuous system.

The present letter deals with the mechanical system shown in Figure 1, which is
essentially the same as that in reference [5], i.e. a longitudinally vibrating rod fixed at one
end and free at the other. In the present study a viscous damping element is included in
the system, a feature which is not considered in the references cited above. The first step
in this work aims to derive the characteristic equation of this continuous system (to the
knowledge of the authors, it is not available in the technical literature). The second step,
which results from an aim that is considered to be more important by the authors, is to
obtain the characteristic values and to study the dependence of their convergence
properties towards the actual values, with the number of discrete masses n, for a
continuous system approximated by a uniform chain comprised of n equal masses and
springs. It is thought that a contribution will result in the area of investigation of the
approximation properties of a discrete model for a damped continuous system. These kinds
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Figure 1. Original system: longitudinally vibrating elastic rod, viscously damped in-span.

of damped continuous systems could be encountered in diverse technological areas such
as drill strings, ocean cables, piping systems, and space structures.

2. 

The mechanical system to be investigated is shown in Figure 1. It consists of an axially
vibrating fixed-free elastic rod of length L which is damped viscously at an intermediate
location hL. Axial rigidity and mass per unit length of the rod are EA and m, respectively.
The effective damping constant is d. Consider first the continuous model.

2.1. The continuous model
The equations of motion of the longitudinal vibrations of a rod is the well known partial

differential equation [1].

EAu0(x, t)=mü(x, t) (1)

where over dots and primes denote partial derivatives with respect to time t and position
coordinate x, respectively. Denote the axial displacements in the regions to the left and
right of the attachment point of the damper as u1(x, t) and u2(x, t). Both of them are
subject to the differential equation (1). The corresponding boundary and matching
conditions are:

u1(0, t)=0, u1(hL, t)= u2(hL, t), u'2 (L, t)=0

u'1 (hL, t)− u'2 (hL, t)+ [d/(EA)]u̇1(hL, t)=0. (2)

Assuming a solution of the type

ui (x, t)=Ui (x) exp (lt) (i=1, 2) (3)

Figure 2. Discrete model: viscously damped uniform oscillator made up of n equal masses and springs.
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T 1

Dependence of the first four dimensionless eigenfrequencies of the undamped rod, on the
number of discrete masses n

v̄1 v̄2 v̄3 v̄4

n 1·57079633 4·71238898 7·85398163 10·99557429

1 1·00000000 – – –
2 1·23606798 3·23606798 – –
3 1·33512560 3·74093881 5·40581321 –
4 1·38918542 4·00000000 6·12835554 7·51754097
5 1·42314838 4·15415013 6·54860734 8·41253533
6 1·44644016 4·25525864 6·81677696 8·98212898
7 1·46339849 4·32623792 7·00000000 9·36782849
8 1·47629375 4·37860784 7·13181369 9·64215418
9 1·48642822 4·41873877 7·23051764 9·84506685

10 1·49460187 4·45041868 7·30682049 10·00000000
15 1·51947507 4·54283333 7·51957597 10·41915759
20 1·53210935 4·58733702 7·61564437 10·59926009
30 1·54487482 4·63052773 7·70390131 10·75684553
40 1·55130654 4·65158631 7·74486966 10·82650398
50 1·55518119 4·66403904 7·76838473 10·86521501

100 1·56296551 4·68851472 7·81291859 10·93541388
150 1·56557063 4·69654134 7·82700044 10·95660692
200 1·56687512 4·70052919 7·83389476 10·96677950
250 1·56765844 4·70291367 7·83798398 10·97274609
300 1·56818090 4·70449986 7·84069027 10·97666644
350 1·56855422 4·70563116 7·84261358 10·97943850
400 1·56883428 4·70647870 7·84405072 10·98150208
500 1·56922646 4·70766391 7·84605499 10·98436880
600 1·56948797 4·70845318 7·84738617 10·98626546
800 1·56981494 4·70943878 7·84904448 10·98861996

1000 1·57001116 4·71002961 7·85003645 10·99002394
1200 1·57014199 4·71042328 7·85069650 10·99095629
1500 1·57027283 4·71081677 7·85135555 10·99188572

Ui (x) and l being the unknown amplitude functions and characteristic value, results in
the following ordinary differential equations for Ui (x)

U0i (x)− b2Ui (x)=0 (i=1, 2) (4)

where

b2 =ml2/(EA) (5)

is introduced.
The solutions of the differential equations (4) are

U1(x)=C1 exp (bx)+C2 exp (−bx)

U2(x)=C3 exp (bx)+C4 exp (−bx) (6)

where C1–C4 are integration constants to be determined. The substitution of the solutions
(3) in connection with (6) into the boundary conditions (2) yields a set of four
homogeneous equations for the determination of the constants C1–C4. For non-vanishing
solutions, the determinant of the coefficients must be equated to zero. It can be shown
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Figure 3. Dependence of (a) the real parts, (b) the imaginary parts of the eigencharacteristics b�i on the number
of the discrete masses.
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after some algebraic manipulations that this condition results in the following characteristic
equation

2 cosh b�+ a{sinh b�−sinh [(1−2h)b�]}=0 (7)

where the abbreviations

b�= bL, a= dl/(EAb) (8)

are introduced. For comparison purposes with other studies, it is worth noting that b� above
can also be written as

b�= lL/c (9)

where c=zE/r represents the velocity of the wave propagation along the rod, r being the
density of the rod material.

The complex roots of the transcendental equation (7) give the dimensionless characteristic
parameters b� and therefore by considering expressions (8), the eigencharacteristics l of the
system in Figure 1.

Before proceeding further to the solution of the complex equation (7), it is in order to
consider the special case h=1 which corresponds to the case that the rod is damped at the
free end. It is an easy matter to show that the equation (7) simplifies to the expression

(EA/c) exp (b�)+ exp (−b�)=−d(exp (b�)− exp (−b�)) (10)

which is also given in [6] in different notations.
With b� as a complex number

b�= x+ iy (11)

it can be shownaftermanipulations that the solution of the complex equation (7)with respect
to b� is equivalent to the simultaneous solution of the following set of two real equations with
respect to x and y

(2 cosh x+ a sinh x) cos y− a sinh [(1−2h)x] cos [(1−2h)y]=0

(2 sinh x+ a cosh x) sin y− a cosh [(1−2h)x] sin [(1−2h)y]=0. (12)

2.2. The discrete model
The original continuous system in Figure 1 is now modelled as a uniform oscillator

consisting of n equal springs of stiffness coefficient k and n equal masses of mass m' (Figure
2). The oscillator is damped at the pth mass by a viscous damper of damping coefficient d.

It is reasonable to take

k= n(EA/L), m'=mL/n (13)

where p denotes the integer nearest to hn.

T 3

Minimum number of discrete masses required for the given error bounds

Error real (b�1) imag (b�1) real (b�2) imag (b�2) real (b�3) imag (b�3) real (b�4) imag (b�4)

5% 30 10 200 15 20 15 500 20
2% 100 30 500 30 40 30 1200 40
1% 150 50 1000 100 100 100 – 100

0·5% 250 100 – 150 150 150 – 150
0·2% 600 250 – 300 300 300 – 300
0·1% 1200 500 – 600 600 600 – 600
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The mass, damping and stiffness matrices M, C, and K of the system in Figure 2
are simply

p
······· 0··G

G

G

G

G

K

k

G
G

G

G

G

L

l

·M=diag (m'), C= ,··
p · · · · · · · · · · · · · d

0

2 −1

−1 2
· · ·

0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

K= k · · ·
· · ·

· · · . (14)
· · · 2 −1

0
−1 1

Going to the state description of the system, it can be shown that the eigencharacteristics
of the damped oscillator can be obtained as the eigenvalues l of the following 2n×2n
system matrix

0 ····
I

G
G

G

K

k
G
G

G

L

l
A= · · · · · · · · · · · · · · · · · · · · (15)

−M−1K
···· −M−1C

which can be written as

(16)

where

v2
0 = k/m'= n2EA/(mL2), n= d/m'= nd/(mL) (17)

and I being the n dimensional identity matrix.
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Once the eigenvalues l of the above system matrix A are determined, the resulting
complex numbers multiplied by L/c can be compared with those b� obtained as the roots
of equation (7) or equivalently, as the solutions of the set of equations (12) in connection
with (11).

For the sake of completeness, the corresponding expressions for the undamped case are
also collected. As is known, in the undamped case even the explicit expressions of the
eigenfrequencies can be given for both systems, rather than the frequency equations. The
ith eigenfrequency of the system in Figure 1 without damping is [1]

vi =(i−1/2)pzEA/(mL2) (18)

whereas that of the system in Figure 2 can be shown to be [7]

vi =z2n2{1−cos [(2i−1)p/(2n+1)]}zEA/(mL2). (19)

It is an easy matter to show that when n tends to infinity, formula (19) reduces to the
expression given by (18).

3.  

This section is devoted to the numerical evaluation of the expressions used and derived
in the preceding section. The following data are selected for the physical parameters of
the vibrating system in Figure 1. The rod under consideration is an aluminum rod of
circular section.

L=1 m, A= p×10−4 m2, E=7×1010 N/m2,

r=2·86×103 kg/m3, d=10 N/(m/s), h=0·6.

Table 1 is concerned with the undamped case. The first row contains the first four
dimensionless exact eigenfrequencies v̄i =vi /zEA/(mL2) of the continuous rod,
calculated from equation (18). In the remainder of the table, the corresponding
non-dimensional eigenfrequencies of the discretized rod, i.e. uniform oscillator are
collected in dependence of the number of the selected degrees of freedom n, calculated from
(19). In Table 1, it can be seen that the discrete approximation error decreases with number
of discrete masses n, with initially a larger sensitivity with respect to n, and approaching
zero asymptotically. It is worth noting that with some of the smaller n values, there is the
additional error producing effect due to the rounding of the number hn as it may not
coincide with a mass point, i.e. it may not be an integer, in which case it is rounded to
the nearest integer. As expected, convergence is best for the fundamental frequency. The
sensitivity of the error with respect to n becomes generally less for the higher frequencies.

Consider now the damped case. The corresponding values which are complex numbers
rather than real are collected in Table 2. The non-dimensional eigencharacteristics b� are
given rather than l, to allow comparison with the undamped case. The first row contains
b� values which were obtained from the numerical solution of the set of equations given
in (12) with the help of MATLAB. In other words, these are the ‘‘exact’’ values. The
complex numbers in the remainder of the table show the corresponding b� values which
were determined as the eigenvalues of the system matrix A in (16) multiplied by L/c
according to the relation (9). In other words, these represent the approximate values in
dependence of the degrees of freedom of the uniform oscillator. It is worth noting that
in case of n degrees of freedom, the eigenvalues are computed from a matrix of order
2n×2n. Due to the smallness of the selected viscous damping constant d, the imaginary
parts of the b�i values are practically the same as the v� i values in Table 1, providing an
indirect indication of the validity of the method used to calculate the damped
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eigencharacteristics. The convergence characteristics of the damped case are observed to
be similar to those of the undamped case, including the rounding effect associated with
hn, and the dependence of the sensitivity of the error with respect to n, on the mode
number. In Figure 3, the real and imaginary parts of the eigencharacteristics b� for the
damped case are plotted for a certain range of the number of discrete masses n, to illustrate
the nature of convergence with n. In Figure 3(a), it can be seen that the discrete mass
approximation overestimates the real part of the eigencharacteristics except for the second
mode. On the other hand, in Figure 3(b), it can be observed that the discrete mass
approximation underestimates the imaginary parts, i.e. the ‘‘damped eigenfrequencies’’ for
all four modes. It is worth noting that what is shown in reference [5] for the undamped
case, remains valid also for the damped case. To see the dependence of the error on the
number of discrete masses better, minimum numbers of discrete masses required for some
prescribed error bounds are given in Table 3.

Table 3 is based on the same set of discrete mass numbers n, which were used in Table
2. The columns for the imaginary parts in this table will be the same as the columns of
a table for the undamped case because of the smallness of the damping coefficient, as can
be seen from the comparison of Tables 1 and 2. It can be observed from Table 3 that the
errors in the real parts of b�1 and b�3 are reduced much faster with increasing n, compared
to those of b�2 and b�4. On the other hand, the decrease of errors in all the imaginary parts
are more sensitive to an increase in n, than those in the real parts. Furthermore, all the
imaginary part errors vary with n in roughly the same manner.

4. 

The present study deals with a longitudinally vibrating elastic rod fixed at one end free
at the other, damped viscously by a single damper in-span. In the first step, the
characteristic equation of the continuous system is derived. In the second, the rod is
modelled as a uniform oscillator consisting of n equal masses and springs. The main
purpose of the work was to study the dependence of the convergence of the uniform
oscillator model eigencharacteristics towards those obtained from the continuous system
(i.e. the ‘‘exact’’ values), on the number of discrete masses n.
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